A Framework for Autonomous Trajectory-Based Operations, Phase I

Completed Technology Project (2015 - 2015)

Project Introduction

The innovation proposed is a framework for autonomous Traffic Flow Management (TFM) under Trajectory Based Operations (TBO) for Unmanned Aerial Systems (UAS). The concept, called DRIFT-UAS (Distributed Resilient Framework for Trajectory Management of Unmanned Aerial Systems), is a cloud-based system that consists of algorithms and an information-sharing framework that would enable autonomous trajectory planning and strategic deconflicting of trajectories of manned and unmanned aircraft, while optimizing system-wide objectives such as safety, efficiency, and equity. DRIFT-UAS envisions four information signals that are exchanged in a cloudbased environment. The signals are (a) trajectory intent from an aircraft to DRIFT-UAS, (b) trajectory feedback (e.g., level of congestion on the proposed route as well as nearby routes in time and space) from DRIFT-UAS to the aircraft (c) loading projections from DRIFT-UAS to NAS ATC resources, and (d) capacity signals derived from weather forecasts, dynamic airspace restrictions, or acceptable loading levels at various NAS resources. The signals are processed by a centralized MDM (Master De-conflicting Module) to generate a trajectory feedback signal, and ATGMs (Autonomous Trajectory Generation Modules) autonomously generate trajectories for aircraft based on the feedback signal. DRIFT-UAS is based on a new class of algorithms for solving large-scale TFM problems by separating TFM optimization into two problems--a master problem, equivalent to the MDM that checks for capacity violations and allocates resources to competing aircraft, and a sub-problem, equivalent to the ATGM solved by each individual aircraft that generates 4-d trajectories for each flight. The master problem exchanges dual prices that signal congestion across ATC resources to guide the sub-problems to an optimal solution.

A Framework for Autonomous Trajectory-Based Operations, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	2
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

A Framework for Autonomous Trajectory-Based Operations, Phase I

Completed Technology Project (2015 - 2015)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Resilient Ops, Inc	Lead Organization	Industry	Winchester, Massachusetts
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Primary U.S. Work Locations	
Massachusetts	Virginia

Project Transitions

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Resilient Ops, Inc

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Bala G Chandran

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

A Framework for Autonomous Trajectory-Based Operations, Phase I

Completed Technology Project (2015 - 2015)

December 2015: Closed out

Closeout Summary: A Framework for Autonomous Trajectory-Based Operation s, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/138724)

Images

Briefing Chart Image

A Framework for Autonomous Trajectory-Based Operations, Phase I (https://techport.nasa.gov/imag

(nttps://tecnport.nasa.gov/image/125808)

Technology Areas

Primary:

- TX17 Guidance, Navigation, and Control (GN&C)
 - □ TX17.2 Navigation Technologies
 - ☐ TX17.2.3 Navigation Sensors

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

